The name OilPull has always stood for reliable power and plenty of it. In the 1928 line, as never before, it stands for "super-power." Power to do anything you can ask of a tractor, plus the same steady, dependable, even power that has always been associated with the name. Its flexibility, both in belt and drawbar work, is a revelation. In field work the exceptional pulling power of the motor smiles at the hills and the three-speed, ball-bearing transmission makes it adaptable to light or heavy loads without loss in economy for which OilPull has long been famous.

Always in the lead, the Super-Powered OilPulls are so far ahead that there is nothing with which to compare them. Always improving, the improvements for 1928 are so far reaching that they place the OilPull in a class by itself, far ahead of anything in the tractor world.

The old reliable OilPull of 1910 is still found in the 1928 line. The features that made it a world beater at that time have all been retained and improved upon. Oil cooling with its many advantages—dual lubrication with its consequent longer life—the Secor-Higgins system of kerosene burning that has kept the OilPull the most economical tractor in the world for many years. These, and many other features of the original OilPull are retained, and are found in this new line of tractors.

The improvements are found in the refinements of these principles which result in more power and still greater efficiency. Improved Triple Heat Control, which controls the temperatures even to the crankcase and bearings. Improved kerosene burning, which prevents crankcase dilution and consequent wear. Improved handling, both in drawbar and belt, by the new ball-bearing, three-speed transmission and the dry plate clutch; and finally, the absolute dependability of a line of thoroughbreds that has stood the test of 18 years of tractor experience in every field and every kind of work, extending from the rice fields of the south to the brush land of the extreme northwest.

Investigate the new line of Super-Powered OilPulls. It will be worth your while.

"Good Equipment Makes a Good Farmer Better"
RIGHT HAND VIEW OF MODEL "W" SUPER-POWERED OILPULL TRACTOR

LEFT HAND VIEW OF MODEL "W" SUPER-POWERED OILPULL TRACTOR

PAGE TWO

HIGHEST POWERED—LIGHTEST WEIGHT
A Few Reasons for the Super-Powered OilPull’s Exceptional Fuel Economy

The fundamental principles on which the Triple Heat Control System of kerosene burning operates are extremely simple. This explains in a measure why the OilPull tractor has the reputation of being the most successful kerosene burning tractor on the market and why it operates so successfully in the field.

Any petroleum fuel can be burned if it is first vaporized and this vapor mixed with the proper amount of air. To vaporize any fuel except gasoline some heat must be applied to it. The lower the grade of fuel the greater the amount of heat necessary. When heated to the proper temperature and mixed with the proper amount of air, low grade fuels burn as readily as gasoline.

In the heating of these fuels, however, one precaution must be taken—the motor must not be allowed to overheat. In the Triple Heat Control System of kerosene burning OilPull engineers have worked out a way to first allow the motor to get hot enough to vaporize the fuel and then prevent the motor from overheating. This automatic control of the motor is secured by a combination of the cooling, carburetion and governing systems.

Motor Runs Cooler on Heavy Loads

As explained on page 10 the amount of cooling in the radiator is dependent directly on the strength of the exhaust. On light loads there is only a light exhaust and the motor is allowed to heat up to the proper temperature for kerosene burning. The heavier loads increase the exhaust, increasing the cooling effect and preventing overheating.

The Carburetor Feeds Water

The carburetor is mainly used to mix the proper amount of air with the fuel. However, on the OilPull it comes to the aid of and works with the cooling system at the heavier loads; by means of a special design, water is fed into the mixture at medium and heavy loads. On light loads only kerosene is drawn into the engine. On medium...
Oil Cooling—The Solution of Your Overheating or Freezing Problem

The OilPull tractor uses oil instead of water in its cooling system. In addition to oil being superior to water as a cooling medium, the design of the entire cooling system is such as to practically eliminate all cooling troubles. It does not freeze in the coldest weather; neither does it overheat in the hottest.

The system is extremely simple. There is only one moving part, a positively driven pump revolving in an oil bath. The air circulation through the radiator is secured by leading the exhaust into a stack above the radiator and causing it to shoot upward. At every explosion a suction is created which draws cool air up through the radiator from the bottom. The need for a fan is eliminated and there are no mechanical troubles.

This method of air circulation is also the reason why the OilPull never overheats. On light loads there is only a light exhaust and only a small amount of air is drawn through the radiator. On heavy loads the exhaust increases and a greater amount of air is drawn through the radiator and the motor is cooled to a greater degree. With this method, the heavier the load, the cooler the OilPull runs.

There are several other advantages in the use of oil as a cooling medium. Oil will not evaporate, as there is no boiling in the hottest weather. The OilPull cooling system goes indefinitely without refilling.

Oil does not rust the system’s parts. Oil is a preserver of metal. The OilPull radiator will last the life of the tractor. Neither does oil deposit sediment. As a result, the OilPull cooling system is always open.

Oil has a higher boiling point than water. The temperature of the motor can be kept hot enough to burn kerosene successfully without boiling away the cooling medium.

This illustration also shows how crankcase dilution is prevented in the Super-Powered OilPull. As the inlet valve (A) opens on the intake stroke, a slight vacuum is created in the pipe (B) leading from the air intake pipe of the carburetor to the top of the crankcase. This vacuum, though only slight, carries away the fumes of the crankcase before the condensation takes place. At the same time cool air enters the crankcase through the ventilator (C).
Simplest and Sturdiest Transmission Built

All of the power of the Super-Oil Pull, twin-cylinder motor is delivered direct to the drive-wheels through a spur-gear transmission.

The transmission is exceedingly simple and sturdy in its construction. Every part is made from the best materials; shafts, special steel, heat-treated; spur gears of liberal width with thick, sturdy teeth, all cut from solid steel forgings and case-hardened. All shafts are mounted on ball bearings, thus reducing power and friction losses, while each individual ball bearing is enclosed in its own housing and is supplied with lubricant by an Alemite high-pressure system.

Shafting is short and heavy and the line of power is direct and simple. No thrust bearings are necessary as there are no bevel gear drives to hold in position. The large double master gears are keyed to the inner ends of the rear axles, giving a final drive that is practically twice as strong as the ordinary single drive.

The placing of the differential ahead of the final drive eliminates 75% of the side pressure and strain that is always present at this point, where a single drive is used, and does away entirely with the necessity for thrust washers and adjustments.

This is far more costly than the single gear drive but is vastly superior in efficiency and durability.

The whole transmission assembly is enclosed and runs in oil.

Three Speeds Ahead

This simple, sturdy construction allows for three speeds without adding extra mechanism and makes for more economical field work. The low speed can be used for heavy loads and for planting and work that requires slow travel, while the intermediate and high gears allow for a wide range of work and cut down on the time required to do the lighter field jobs.

Highest Powered—Lightest Weight