THIS IS A MANUAL PRODUCED BY JENSALES INC. WITHOUT THE AUTHORIZATION OF NEW HOLLAND OR ITS SUCCESSORS. NEW HOLLAND AND ITS SUCCESSORS ARE NOT RESPONSIBLE FOR THE QUALITY OR ACCURACY OF THIS MANUAL.

TRADE MARKS AND TRADE NAMES CONTAINED AND USED HEREIN ARE THOSE OF OTHERS, AND ARE USED HERE IN A DESCRIPTIVE SENSE TO REFER TO THE PRODUCTS OF OTHERS.
2. The socket located on the axle brace facilitates installation of the SMV (Slow Moving Vehicle) emblem shown in Figure 11.

Because of the variation in safety laws of different States, modifications may be necessary. Your authorized New Holland dealer will assist you in making any changes necessary to comply with the laws of your state.

THREADING THE TWINE BALER

Place four balls of twine in the twine box. Tie the two left and right hand balls together as shown in Figure 12.

Thread twine from the left center ball through Point A, Figure 12, and from the right center ball through Points B, C, and D.
Figure 21A shows the knotter/twister trip arm in the tripped position. **IMPORTANT:** Each time the bale length is changed by moving the bale length set collar, the length of the counter trip chain must be checked and adjusted as described above.

To reset the counter, place the knotter/twister trip arm in the re-set position; then turn the re-set knob until all four zeros appear on the window. Then reverse the re-set knob until a distinct release is felt. All four tumblers are then aligned.

WINDROW PREPARATION

A properly prepared windrow is essential to high-capacity baling and the production of uniform shape and length bales. The windrow should be of medium size and as uniform as possible. The size of the windrow should not exceed that which the baler can pick up and handle efficiently.

ALWAYS MOW, RAKE, AND BALE IN THE SAME DIRECTION

STARTING THE BALER

After the baler is serviced and correctly attached to the tractor, make sure that all persons and tools are clear of the machine and cautiously engage the tractor P.T.O. Operate the baler slowly for a time without load and gradually increase the plunger speed to 70 strokes per minute.

IMPORTANT: THE BALER IS DESIGNED TO OPERATE AT A MAXIMUM SPEED OF 75 PLUNGER STROKES PER MINUTE. THE THROTTLE RANGE OF TRACTORS HAVING EXCESS P.T.O. SPEED SHOULD BE LIMITED TO PREVENT POSSIBLE DAMAGE TO THE MACHINE.

For best results, operate the baler at 70 strokes per minute. Regulate the tractor ground speed to suit the windrow size. Do not attempt to overfeed the baler as it will result in poorly shaped and ragged looking bales. Overfeeding can also lead to irregular length bales. As a guide, do not attempt to put any less than 11 to 12 strokes per 36 inch bale. See section on “Pickup Slip Clutch.”

The knotters and twistes are adjusted at the factory and should need little or no further adjustment. If, the baler should mistie a few bales when first starting to bale do not tamper with it before allowing a brief “break-in” period.

Experience has shown that a large percentage of tying difficulties is the result of baling with excessive bale tension. **THERE-**
FORE, BEFORE MAKING ANY ADJUSTMENTS
BE CERTAIN THAT EXCESSIVE BALE TENSION
IS NOT THE CAUSE OF THE DIFFICULTY.
Do not attempt to regulate the size or density of the bales with the tension on the twine or wire.
Should it become apparent that the tying difficulty is not due to paint on rough edges, but rather to maladjustment, study the section on knotter or twister adjustment carefully before attempting to correct the difficulty.

UNPLUGGING THE BALER
Overfeeding may cause the baler to plug and break a flywheel shearbolt. Should this occur, the following steps should be taken to unplug the baler.

1. Disengage the tractor P.T.O. clutch and back the baler away from the windrow. Shut off tractor engine. On engine models, disengage drive belts and stop engine completely.
2. Replace the flywheel shearbolt.

3. Make certain the knotters and needles are in the home position. If they are not, remove the needles from the bale case by pulling on the needle yoke. Reset the trip arm and knotter clutch pawl.
4. Fully release all bale tension on the bale tension cranks.
5. Start the tractor engine and run at approximately 1/3 throttle.
6. Slowly engage the tractor P.T.O. clutch and attempt to turn the baler flywheel until the baler P.T.O. clutch begins to slip. Disengage the tractor P.T.O. clutch which will allow the baler flywheel to turn backward. Repeat this procedure until the baler clears itself. On engine models follow same procedure – engaging and disengaging drive belts to clear the baler.
7. Disengage tractor P.T.O. clutch and shut tractor engine off.
8. Reset bale tension cranks and resume baling operation.

LUBRICATION
The New Holland Hayliner 273 is designed to require a minimum of lubrication. However, regular lubrication is the best insurance against delays and repairs, and greatly increases the life of the machine.

Under normal conditions, the baler should be lubricated after every 1000 bales of operation.

P.T.O. MODELS ONLY
1 & 2. Figures 22 and 23. Front and rear universal. Lubricate the universal joints of the P.T.O. drive carefully with one or two pumps of a hand gun twice a week.

FIGURE 22
CAUTION, EXCESSIVE LUBRICATION MAY DAMAGE THE GREASE SEALS.
CAM FOLLOWER CLEARANCE

The clearance between the cam follower bracket and the cam should be \(\frac{1}{4} \) in at point E, Figure 95.

To obtain this adjustment, loosen bolts F, and G, and the corresponding bolts on the opposite side. Move the shuttle shaft brackets to the proper location and retighten.

WIRE SHEAR CLAMP PIVOT BOLT

The shear clamp pivot bolt should not be tightened so that the shear clamp cannot pivot freely. To properly adjust this pivot bolt, draw it up snug and then loosen it just enough to allow the shear clamp to pivot. Be sure to tighten the pivot bolt locking nut located on the underside of the main plate of the twister frame.

It is especially important to check to see that the shear clamp pivots freely after the baler has been idle for some time. Moisture and dirt accumulation will sometimes corrode these parts.

WIRE SHEAR CLAMP

The wire shear clamp must be adjusted so that it holds the No. 1 wire securely while the bale is being formed, but does not crimp so severely as to break the wire.

The crimp at the end of the twist at point A, Figure 95A, is typical of a well adjusted wire shear clamp.

Obtain this adjustment with set screws J and K, Figure 95. Adjust the clamping action with set screw J when the clamp is in the position shown in Figure 95, and with set screw K when the clamp is in the opposite direction.

The clamping action may be very easily checked by holding a piece of wire in the same position as the needle would place it in the twister and turning the machine through a twisting cycle.