CONTENTS

- A Note to You, Mr. Owner .. 1
- Specifications .. 3
- Special Equipment .. 3
- Introduction .. 4
- Hay Making Hints ... 5
- Engine Care .. 6
- Daily Care of the Baler .. 6
- Lubrication .. 6
- Baler Break-In ... 8
- Attaching Baler to Tractor .. 8
- Preparing to Bale .. 8
- Threading the Needles .. 8
- Regulating Bale Weight .. 9
- Safety Features ... 10
 - Plunger Safety Latch ... 10
 - Shear Bolts ... 10
 - Pick-up Slip Clutch .. 11
- Adjustment ... 11
 - Pick-up Assembly .. 11
 - Wind Guard ... 11
 - Replacing Pick-up Fingers 11
- Needles ... 12
- Needle Yoke .. 12
- Needle Timing .. 12
- Knotter Brakes .. 13
- Wadboard ... 13
- Plunger and Knife Adjustment 14
- Plunger Slides .. 14
- Feeder Plunger ... 14
- Metering Wheel .. 15
- Knotter Adjustment .. 15
 - Twine Fingers .. 15
 - Twine Disc .. 16
 - Twine Holder ... 16
 - Bill Hook .. 17
 - Knife Arm ... 18
- Storing the Baler .. 18
- Knotter Shaft Assembly .. 19
- Trouble Shooting Chart .. 20
- Ordering Repair Parts .. 23
- Safety Precautions ... 24
- About Improvements .. 24
- Warranty ... 25
SPECIFICATIONS

Baler

Length over-all bale chute up .. 15' 9"
Length over-all bale chute down 18' 5"
Wheel tread width .. 7' 4"
Width over-all .. 8' 9"
Pick-up width .. 47½"
Height .. 6'
Weight complete .. approx. 2500 lbs.
Size of bale chamber .. 14” x 18”
Length of bales ... adjustable to 30” — 36” — 42”
Plunger stroke .. 26”
Plunger speed .. 70 strokes per minute
Capacity .. up to 7 tons per hour.
Tire pressure left wheel (6:00 x 16” tire) 36 lbs.
Tire pressure right wheel (5:00 x 16” tire) 32 lbs.
Power required to draw baler .. one plow tractor

Engine

Make ... Wisconsin
Type .. TF-D
Rated horse power ... 15 H.P. at 2890 R.P.M.
Number of cylinders .. 2
Crank case capacity .. 3½ qts.
Fuel tank capacity ... 6 gal.
Type of gasoline .. 70 to 75 octane

SPECIAL EQUIPMENT

Baler cover
Dual wheels
Wagon hitch and bale loading chute
Jack
INTRODUCTION

The Model 66 New Holland Baler is designed to meet the need of the individual farmer who does not want to be dependent on custom operators. It is built for economy both in initial cost and operation, containing fewer working parts and weighing approximately 2,000 lbs. less than the larger Model 77 New Holland Baler.

Like all New Holland balers, the Model 66 Baler automatically picks up hay from the windrow and delivers it in sliced uniform bales with only the tractor operator required for the entire process. The baling rate varies from 3 to 7 bales per minute depending upon the condition and type of material, size of windrow, and other varying factors.

The Model 66 Baler is powered by a 15 H.P. two cylinder Wisconsin air cooled engine and it is designed to operate at a plunger speed of 70 strokes per minute. The feeder is equipped with a floating bottom and a plunger driven wadboard which make possible high capacity and positive feed with a minimum loss of leaves.

The bale counter, supplied as standard equipment, makes it possible to keep an accurate account of the bales and eliminates guess work. Also supplied with each machine is the adjustable metering wheel which enables the operator to select the length of bale that best suits his need.

Other equipment listed on page 3 may be obtained at extra cost to provide additional advantages and conveniences.
The goal of all hay making effort is to produce the finest hay possible with a minimum of labor and expense. Here are a few suggestions for making top quality hay efficiently:

Begin mowing at the outside of the field so that the side delivery rake and the baler may follow in the same direction as the mower. Raking in this way turns the top and the leaves of the plant to the inside of the windrow where they are protected, and cleaner raking is possible.

For best baling results, the windrows should be uniform and of average size, since the baler should be fed uniformly to enable it to work to its greatest capacity and produce well formed bales. Ordinarily, a seven foot swath raked in a windrow is about right but two swaths may be raked together in some cases where the crop is very light.

The best quality hay is made by allowing the crop to become well wilted in the swath before raking so that the curing process is completed in the windrow. This method prevents the excessive loss of leaves and the shattering that results when dry hay is raked. Baling may begin when the moisture content of the hay has been reduced to approximately 25%. At this point there will be no evidence of moisture when the stems are twisted. Hay baled at this stage will retain its original color and sweetness if properly stored.

When baling hay for mow curing it is advisable to make the bales less compact than normal to permit the passage of air through the bale and thus prevent spoilage. Under these conditions it is also advisable to stack the bales on edge (the sheared side down) without any air space between them, placing alternate layers of bales at right angles to the preceding layer.
ADJUSTMENT

Always determine and correct the cause of shear bolt failure before continuing to operate the machine. Caution: If the flywheel shear bolt fails during the tying cycle and the needles are in the bale chamber, clean the hay from between the needles and the wadboard and return the needles to their home position before attempting to continue to operate the machine. Refer to the section on the plunger safety latch, page 10, for further details.

PICK-UP SLIP CLUTCH
The pick-up slip clutch is designed to protect the pick-up assembly from damage by overloading. Adjust the spring loaded bolts of the clutch evenly to increase or reduce the pressure on the friction discs of the clutch. For normal conditions, the pick-up clutch springs should be compressed to the length of 1½".

WIND GUARD
Adjust the wind guard rods of the pick-up to accommodate size of windrow and condition of material, by rotating the wind guard stop (Figure 10) so that material is held firmly against the pick-up fingers. Increase the tension on the rods by tightening the coil spring on the supporting bar across the front of the pick-up.

PICK-UP ASSEMBLY
The pick-up is provided with a lift spring that is designed to give the pick-up a "floating action". THE AUXILIARY PICK-UP WHEEL SHOULD STRIKE THE GROUND ONLY OCCASIONALLY and guide the pick-up over rough and uneven ground. At no time should the auxiliary pick-up wheel carry the entire weight of the pick-up.

To avoid undue strain on the pick-up assembly and the pick-up ground wheel, adjust the pick-up lift spring by tightening the nut on the lift spring tension bolt until the pick-up wheel rests lightly on the ground.

Secure the proper clearance between the pick-up fingers and the ground by bolting the mounting bracket of the pick-up wheel to the channel iron support in the appropriate hole.

Lock the pick-up in the raised position for road travel by inserting the lock pin behind the pick-up lift lever at the side of the pick-up.

REPLACING PICK-UP FINGERS
To replace pick-up fingers proceed as follows:
1. Remove the chain guard, loosen the idlers, and remove the pick-up drive chain. The end pick-up guard over the pick-up cam may also be taken off to make the job easier.
2. Remove the mounting bolts from all the sets of teeth on the pick-up drum pipe on which the fingers are to be replaced.
3. Remove all cotter keys.
4. Turn the pick-up to the point where the pick-up cam roller may be removed through the hole in the right side of the pick-up side plate (point B, Fig. 11).
5. Remove the drum pipe through the slot in the side plate, point A.
6. Replace the pick-up fingers on the pick-up drum pipe as it is reinstalled through the end casting of the pick-up drum assembly.
7. Position the pick-up drum pipe and install the cam rollers. Make sure that the cam rollers follow the drum pipes in the direction of pick-up travel.
8. Reinstall all cotter keys and bolt the pick-up fingers to the drum pipe.